Analytical approach to recovering bone porosity from effective complex shear modulus.

نویسندگان

  • Carlos Bonifasi-Lista
  • Elena Cherkaev
  • Yener N Yeni
چکیده

This work deals with the study of the analytical relations between porosity of cancellous bone and its mechanical properties. The Stieltjes representation of the effective shear complex modulus of cancellous bone is exploited to recover porosity. The microstructural information is contained in the spectral measure in this analytical representation. The spectral function can be recovered from the effective measurements over a range of frequencies. The problem of reconstruction of the spectral measure is very ill-posed. Regularized algorithm is derived to ensure stability of the results. The proposed method does not use any specific assumptions about the microgeometry of bone. The approach does not rely on correlation analysis, it uses analytical relationships. For validation purposes, complex shear modulus over a range of frequencies was calculated by the finite element method using micro-computed tomography (micro-CT) images of human cancellous bone. The calculated values were used in numerical algorithm to recover bone porosity. At the microlevel, bone was modeled as a heterogeneous medium composed of trabeculae tissue and bone marrow treated as transversely isotropic elastic and isotropic viscoelastic materials, respectively. Recovered porosity values are in excellent agreement with true porosity found from the corresponding micro-CT images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical impedance spectroscopy as a potential tool for recovering bone porosity.

This paper deals with the recovery of porosity of bone from measurements of its effective electrical properties. The microstructural information is contained in the spectral measure in the Stieltjes representation of the bone effective complex permittivity or complex conductivity and can be recovered from the measurements over a range of frequencies. The problem of reconstruction of the spectra...

متن کامل

Computationally designed lattices with tuned properties for tissue engineering using 3D printing

Tissue scaffolds provide structural support while facilitating tissue growth, but are challenging to design due to diverse property trade-offs. Here, a computational approach was developed for modeling scaffolds with lattice structures of eight different topologies and assessing properties relevant to bone tissue engineering applications. Evaluated properties include porosity, pore size, surfac...

متن کامل

Targeted mechanical properties for optimal fluid motion inside artificial bone substitutes.

Our goal was to develop a method to identify the optimal elastic modulus, Poisson's ratio, porosity, and permeability values for a mechanically stressed bone substitute. We hypothesized that a porous bone substitute that favors the transport of nutriments, wastes, biochemical signals, and cells, while keeping the fluid-induced shear stress within a range that stimulates osteoblasts, would likel...

متن کامل

Numerical Simulation of Homogeneous, Two and Three Lattice Layers Scaffolds with Constant Density

Advances in the additive manufacturing technology have led to the production of complex microstructures with unprecedented accuracy and due todesigning an effective implant is a major scientific challenge in bone tissue regeneration and bone growth. In this research, titanium alloy cylindrical scaffolds with three-dimensional architectures have been simulated and compared for curing partial bon...

متن کامل

Mathematically and experimentally defined porous bone scaffold produced for bone substitute application

Objective (s): Artificial bone implants have been studied as a possible bone replacement for fractured and destroyed facial tissue; the techniques employed to determine the success of the dental implants. The stability, porosity and resistance of the bone implant which is subjected to varying forces and stresses within the surrounding bone is a subject of interest among the dentists. Materials ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 131 12  شماره 

صفحات  -

تاریخ انتشار 2009